LaTeX to XML Math Delimiters
Vim is amazing when used to edit MediaWiki text, but typing "<math> . . . </math>" can be tiresome and frustrating if formulas are used often. LaTeX delimiters are so concise and even come in two flavors: "\( . . . \)" for inline math and "\[ . . . \]" for centered formulas. The goal is to perform the following conversions: "\( . . . \)" becomes "<math>. . .</math>" "\[ . . . \]" becomes "<center><math>. . .</math></center>"
Start file
Given two vectors \(\vec{x}\) and \(\vec{y}\) in \( \mathbb{R}^n \),
their '''dot product''' or '''inner product''' is defined as the following:
\[ \sum_{i=0}^{n} x_i \, y_i \]
----
Integration by parts is another way of writing the product rule of differentiation.
For two functions \(f(x)\) and \(g(x)\), the following are equivalent:
\[ \begin{align}
\frac{\mathrm{d}}{\mathrm{d}x} \left( f(x) \, g(x) \right) &= f'(x) \, g(x) + f(x) \, g'(x) \\
\int f(x) \, g'(x) \, \mathrm{d}x &= f(x) \, g(x) - \int f'(x) \, g(x) \, \mathrm{d}x
\end{align} \]
----
Matrix multiplication is not commutative
\(
\begin{align}
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \,
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix} &\ne
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix} \,
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \\
\begin{bmatrix}
a_{11} \, b_{11} + a_{12} \, b_{21} & a_{11} \, b_{12} + a_{12} \, b_{22} \\
a_{21} \, b_{11} + a_{22} \, b_{21} & a_{21} \, b_{12} + a_{22} \, b_{22}
\end{bmatrix} &\ne
\begin{bmatrix}
a_{11} \, b_{11} + a_{21} \, b_{12} & a_{12} \, b_{11} + a_{22} \, b_{12} \\
a_{11} \, b_{21} + a_{21} \, b_{22} & a_{12} \, b_{21} + a_{22} \, b_{22}
\end{bmatrix}
\begin{align}
\)
''Quod erat demonstrandum''.
End file
Given two vectors <math>\vec{x}</math> and <math>\vec{y}</math> in <math>\mathbb{R}^n</math>,
their '''dot product''' or '''inner product''' is defined as the following:
<center><math>\sum_{i=0}^{n} x_i \, y_i</math></center>
----
Integration by parts is another way of writing the product rule of differentiation.
For two functions <math>f(x)</math> and <math>g(x)</math>, the following are equivalent:
<center><math>\begin{align}
\frac{\mathrm{d}}{\mathrm{d}x} \left( f(x) \, g(x) \right) &= f'(x) \, g(x) + f(x) \, g'(x) \\
\int f(x) \, g'(x) \, \mathrm{d}x &= f(x) \, g(x) - \int f'(x) \, g(x) \, \mathrm{d}x
\end{align}</math></center>
----
Matrix multiplication is not commutative
<math>
\begin{align}
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \,
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix} &\ne
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix} \,
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \\
\begin{bmatrix}
a_{11} \, b_{11} + a_{12} \, b_{21} & a_{11} \, b_{12} + a_{12} \, b_{22} \\
a_{21} \, b_{11} + a_{22} \, b_{21} & a_{21} \, b_{12} + a_{22} \, b_{22}
\end{bmatrix} &\ne
\begin{bmatrix}
a_{11} \, b_{11} + a_{21} \, b_{12} & a_{12} \, b_{11} + a_{22} \, b_{12} \\
a_{11} \, b_{21} + a_{21} \, b_{22} & a_{12} \, b_{21} + a_{22} \, b_{22}
\end{bmatrix}
\begin{align}
</math>
''Quod erat demonstrandum''.
View Diff
1c1
< Given two vectors \(\vec{x}\) and \(\vec{y}\) in \( \mathbb{R}^n \),
---
> Given two vectors <math>\vec{x}</math> and <math>\vec{y}</math> in <math>\mathbb{R}^n</math>,
4c4
< \[ \sum_{i=0}^{n} x_i \, y_i \]
---
> <center><math>\sum_{i=0}^{n} x_i \, y_i</math></center>
9c9
< For two functions \(f(x)\) and \(g(x)\), the following are equivalent:
---
> For two functions <math>f(x)</math> and <math>g(x)</math>, the following are equivalent:
11c11
< \[ \begin{align}
---
> <center><math>\begin{align}
14c14
< \end{align} \]
---
> \end{align}</math></center>
20c20
< \(
---
> <math>
48c48
< \)
---
> </math>
Solutions by @mlegrix:
Unlock 7 remaining solutions by signing in and submitting your own entry