Levenshtein distance
Compute distance for each pair. Notice that this recursive implementation is very inefficient. Wagner-Fischer algorithm is iterative and much faster. #vimscript
Start file
" Levenshtein distance between two strings function! LD(s1, s2) let l1 = strlen(a:s1) let l2 = strlen(a:s2) if l1 <= 0 return l2 elseif l2 <= 0 return l1 elseif a:s1[0] ==# a:s2[0] return LD(a:s1[1:], a:s2[1:]) else return 1 + min([ \ LD(a:s1, a:s2[1:]), LD(a:s1[1:], a:s2), LD(a:s1[1:], a:s2[1:]) \ ]) endif endfunction " Humm... Is this useful? "nmap M I<C-R>=LD("<C-R>a","<C-R>b")<CR><Esc> "VIM VimGolf "keystroke matt "vimscript way "reformat refactor "challenge chatter "colons semicolons "golfer golfers "order sorting "modules models "shift+ret ctrl+ret "ninja manic "destination distance "pattern lines "linewrapping linewrapping "swap switch "vice versa "split multiples "block blackened "-a-b-c c-a-b "hello_world hello world!
End file
6 8 9 5 5 4 1 5 2 5 4 7 6 0 4 4 7 5 3 2
View Diff
1,39c1,20 < " Levenshtein distance between two strings < function! LD(s1, s2) < let l1 = strlen(a:s1) < let l2 = strlen(a:s2) < if l1 <= 0 < return l2 < elseif l2 <= 0 < return l1 < elseif a:s1[0] ==# a:s2[0] < return LD(a:s1[1:], a:s2[1:]) < else < return 1 + min([ < \ LD(a:s1, a:s2[1:]), LD(a:s1[1:], a:s2), LD(a:s1[1:], a:s2[1:]) < \ ]) < endif < endfunction < " Humm... Is this useful? < "nmap M I<C-R>=LD("<C-R>a","<C-R>b")<CR><Esc> < < "VIM VimGolf < "keystroke matt < "vimscript way < "reformat refactor < "challenge chatter < "colons semicolons < "golfer golfers < "order sorting < "modules models < "shift+ret ctrl+ret < "ninja manic < "destination distance < "pattern lines < "linewrapping linewrapping < "swap switch < "vice versa < "split multiples < "block blackened < "-a-b-c c-a-b < "hello_world hello world! --- > 6 > 8 > 9 > 5 > 5 > 4 > 1 > 5 > 2 > 5 > 4 > 7 > 6 > 0 > 4 > 4 > 7 > 5 > 3 > 2
Solutions by @Seve_py:
Unlock 7 remaining solutions by signing in and submitting your own entry